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Mobility Analysis of AmpuTees (MAAT 4): Classification tree analysis for
probability of lower limb prosthesis user functional potential

Shane R. Wurdemana,b, Phillip M. Stevensa,c and James H. Campbella

aDepartment of Clinical and Scientific Affairs, Hanger Clinic, Austin, TX, USA; bDepartment of Biomechanics, University of Nebraska at Omaha,
Omaha, NE, USA; cSchool of Medicine, University of Utah, Salt Lake City, UT, USA

ABSTRACT
Purpose: To develop a predictive model to inform the probability of lower limb prosthesis users’ func-
tional potential for ambulation.
Materials and Methods: A retrospective analysis of a database of outcomes for 2770 lower limb pros-
thesis users was used to inform a classification and regression tree analysis. Gender, age, height, weight,
body mass index adjusted for amputation, amputation level, cause of amputation, comorbid health status
and functional mobility score [Prosthetic Limb Users Survey of Mobility (PLUS-MTM)] were entered as
potential predictive variables. Patient K-Level was used to assign dependent variable status as unlimited
community ambulator (i.e., K3 or K4) or limited community/household ambulator (i.e., K1 or K2). The clas-
sification tree was initially trained from 20% of the sample and subsequently tested with the remain-
ing sample.
Results: A classification tree was successfully developed, able to accurately classify 87.4% of individuals
within the model’s training group (standard error 1.4%), and 81.6% within the model’s testing group
(standard error 0.82%). Age, PLUS-MTM T-score, cause of amputation and body weight were retained
within the tree logic.
Conclusions: The resultant classification tree has the ability to provide members of the clinical care team
with predictive probabilities of a patient’s functional potential to help assist care decisions.

� IMPLICATIONS FOR REHABILITATION
� Classification and regression tree analysis is a simple analytical tool that can be used to provide sim-

ple predictive models for patients with a lower limb prosthesis.
� The resultant classification tree had an 81.6% (standard error 0.82%) accuracy predicting functional

potential as an unlimited community ambulator (i.e., K3 or K4) or limited community/ household
ambulator (i.e., K1 or K2) in an unknown group of 2770 lower limb prosthesis users.

� The resultant classification tree can assist with the rehabilitation team’s care planning providing prob-
abilities of functional potential for the lower limb prosthesis user.
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Introduction

Lower limb prosthetic rehabilitation within the United States cur-
rently relies on the Medicare Functional Classification Level sys-
tem to provide reimbursement eligibility guidelines for prostheses
[1]. Although the Medicare Functional Classification Level, or com-
monly referred to K-level classification, was originally introduced
by the United States Health Care Financing Administration in
1995 to provide coverage guidelines for Medicare beneficiaries
with lower limb amputation, it has since been widely adopted by
private payers [2,3]. Subsequently, a patient’s K-level assignment
often has a large impact on the patient’s prosthesis prescription
[2,4,5], with some commentary going so far as to note “K-level
designation is important because it is the driving factor in the
decision on what prosthetic device to provide” [6].

The K-levels consist of five classifications of ambulatory func-
tion for individuals with a lower limb amputation with a primary

division occurring between K2 and K3. Patients that are K3 and
above are classified as unlimited community ambulators with a
plan of care that aligns with a more active individual. In order to
meet the demands of the unlimited community ambulator, these
patients have increased access to advanced technologies such as
hydraulic/pneumatic knee joints, microprocessor controlled com-
ponents, and feet with higher elastic energy return due to materi-
als such as carbon fibre [1,2,6].

Within the United States, the overseeing physician determines
the status or potential for a patient to be an unlimited commu-
nity ambulator or a limited community ambulator. The K-level is a
determination from the prescribing physician utilizing their clinical
judgment. As part of that clinical judgment, the prescribing phys-
ician often depends on members of the rehabilitation team such
as therapists and prosthetists for increased clinical insight [5]. In
working through the determination process, clinicians may use
various factors such as age, cause and level of amputation, body
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mass index and comorbid health as well as assessment and out-
come instruments such as the Amputee Mobility Predictor
[2,3,5,7]. With respect to K-levels, there is limited evidence to
match such factors with care planning [2,3]. Increased guidance
could better assist the design of care plans based on the expecta-
tions that a given individual will realize unlimited community
ambulation or limited community/household ambulation.

In other arenas of healthcare, improved clinical decision-mak-
ing processes are becoming possible through the use of “big”
data. The increase in computing power and statistical insights has
provided the ability to synthesize “big” data into complex predict-
ive models to inform evidence-based decision trees. Despite
increased utility and growing use of decision trees across health-
care, such predictive models have not been implemented within
prosthetic rehabilitation. This is likely due to the inherent need
for large datasets and the limited availability of such data within
prosthetic care. The lack of implementation of such predictive
models in prosthetic rehabilitation hinders evidence-based deci-
sion making. Without studies developing and testing predictive
models, it is unclear if such decision trees could effectively deter-
mine proper care pathways more effectively than random deci-
sion selection.

Thus, the purpose of this study was to develop a classification-
based decision tree for patients with a lower limb prosthesis as a
means to examine the applicability for future applications of pre-
dictive decision trees in the field of prosthetic rehabilitation. The
specific goal was the development of a model that effectively
informs the care pathway by providing the probability of a
patient being a limited community or household ambulator (i.e.,
K2 or below within the K-level classification) or an unlimited com-
munity ambulator (i.e., K3 or above), henceforth labelled as the
patient’s functional potential. It was hypothesized that the ending
nodes within the decision tree would provide probabilities for
functional potential determination greater than random
determination.

Methods

Study design

We performed an analysis based on review of a database contain-
ing patient information and outcomes from April 2016 through

March 2018. Outcomes and patient information within the data-
base were collected from multiple clinics across the United States
spanning regions including Northwest, Southwest, Rocky
Mountains, Midwest, Southeast, Northeast and East. Cases were
excluded from the model if there were any missing pre-
dictor variables.

This database review was approved and deemed exempt from
patient consent by Western Investigational Review Board
(Protocol #20170059).

Classification and regression tree analysis

While traditional predictive models such as logistic and linear
regression are feasible, these models can have issues with their
implementation and ultimately interpretation by healthcare pro-
viders with perceived “black box” results [8,9]. Classification and
regression tree analysis (CART) is a technique that is gaining
popularity within healthcare due to its ease of interpretation and
implementation [8,10–15] Common examples can be noted for
guidelines on paediatric head trauma [16–18] and paediatric
abdominal injuries [19–21]. Specifically, CART analysis starts with a
large group of individuals, and then makes a series of binary
node splits based on some criterion that improves group purity in
order to effectively classify individuals. The end result is an easily
interpretable logic tree with a series of splits (i.e., branches) lead-
ing to end nodes (i.e., leaves) represented in an illustrated figure
format. Each branch, and in turn, each leaf, yields a classification
probability which ultimately drives the end decision. Due to the
sequential binary splitting process, in order to allow for multiple
branches and leaves, the initial starting sample must be substan-
tial enough to allow multiple splits.

In order to illustrate CART analysis, consider a classic probabil-
ity example. A six-sided die holds the probability of 1/6, or
16.67%, of rolling a “6”. If one were to roll the die 100 times, a
“6” would likely come up 16 times (16%), but might only come
up 11 times, or 11%, due to some associated error. This error
would decrease with increased sampling. If, however, one was to
roll the die enough times and continue to note that a “6” appears
90% of the time, then it would be possible to conclude that it is
a trick die causing the probability of a “6” to be much higher.
Consider though if the characteristic that made it a trick die was
an embedded magnet causing a magnetic force that flipped the
die to a “6”. If the person were to roll the die 1000 times on a
wood board and 1000 times on a metal surface, a “6” would then
appear 1067 times (167 plus 900 on wood and metal surfaces
respectfully). Looking at the output, the conclusion would be a
probability of 0.5335 for a “6” to appear. Thus, the individual
would be left to believe the chances of rolling a “6” is practically
equivalent to a coin toss. But, if more information on the mag-
netic die was provided, very quickly the probability of a “6” can
be adjusted by assessing the surface on which the die will
be rolled.

This is a basic example of a narrative classification tree where
the dependent variable was rolling a “6” or not. This can be illus-
trated in a CART classification tree (Figure 1). Note the top group-
ing consists of all outcomes of the 2000 rolls (i.e., group
members). The top grouping, or node, is labelled as the root
node, representing the start of the classification tree. The root
node subsequently undergoes a split based on information that
provides greater clarity, or purity within the subsequent nodes. In
the example, the criterion is surface type on which the magnetic
die is rolled. There are no further characteristics that can improve
the purity of the sample and thereby improve the probabilities,

Figure 1. Example classification tree providing probability of rolling a “6” with a
magnetic “funny die” based on 2000 rolls. Without any further information, the
probability of rolling a “6” is 53.4% which was the result of 1067/2000 rolls
showing a “6”. Since the “funny die” is magnetic, in the fictional example rolling
on either a metal or wood surface then alters the occurrences of a “6” appearing
such that knowledge of surface type dramatically improves probability of expect-
ing either a “6” or not to appear. Similarly, a classification tree can be used to
guide clinical decision making by providing probabilities based on patient
characteristics.
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and thus the classification tree is complete with two terminal
nodes, or leaves. Had additional characteristics been identified, it
may have been possible to further split the second layer nodes.
In that case, the nodes that split would be labelled as branches
and the third layer nodes would become the leaves.

It is possible that there may have been other characteristics or
factors that were also recorded that would not provide any
improved predictive ability, such as which hand was used to roll
the die or eyes open/closed when rolling the die. A CART analysis
should assess all recorded factors at each node to identify those
that best improve dependent variable prediction. Since the ana-
lysis is reperformed on the groups at each node, each node
becomes increasingly pure. This instills CART with an additional
benefit over traditional regression analysis by reducing error and
being able to explain higher variance at each node [8,22].

Importantly, during the CART analysis at each node, the model
must determine whether a factor is important through the use of
some sort of purity criterion. While there are several methods, the
most common for classification trees is the Gini impurity index
[8,11,12,16,19,22]. The Gini impurity index determines the optimal
means for splitting the members of a node by maximizing the
decrease in impurity. Splitting the membership into two groups
makes it possible to then look at the “purity” on each side of the
split. In our example with the die, choosing the factor of surface
on which the die is rolled resulted in a split of 1000 and 1000
rolls. On the metal surface, the “purity” is:
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and the wood surface is:
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The average then is 0.23. If the same calculation were applied
to another factor such as rolling the die with right or left hand,
now the Gini purity calculations are (assuming there was no
impact and this factor yielded a 0.5 probability):

PRight ¼
XC

i

xi
C

1� xi
C

� �
¼ 500

1000
1� 500

1000

� �

þ 500
1000

1� 500
1000

� �
¼ 0:5 (3)

PLeft ¼
XC

i

xi
C

1� xi
C

� �
¼ 500

1000
1� 500

1000

� �

þ 500
1000

1� 500
1000

� �
¼ 0:5 (4)

The average for this factor is 0.5, which is a higher impurity. Thus,
the factor for surface type would be a better choice to maximize
the decrease in impurity. If the independent factors were continu-
ous or interval rather than dichotomous variables, the same pro-
cess is implemented but more “cut points” are tested going
through the entire scale.

Importantly, it is possible to split members of nodes continu-
ously until there is only a single member within each terminal
node. This, however, comes with the trade-off of increased classifi-
cation error when implementing the model to predict classifica-
tion on an unknown sample. As a result, limits must be put on
the minimum number of members in a node before it can be
allowed to split into subsequent nodes, and minimum number of
members allowed in a leaf should also be set.

Lastly, a classification tree should be tested for repeatability.
This process is done by partitioning the dataset into multiple
datasets so that a large dataset can be used to “train” the classifi-
cation tree, or build the model, and smaller datasets can be used
to test the accuracy of predicting the correct classification of an
unknown group. For the die example, perhaps the 2000 rolls used
to develop the classification tree were part of a larger set of 5000
rolls. Then one might take three additional datasets of 1000 rolls
to confirm classification accuracy for the model. Based on the
results, factors such as node limits can be adjusted to yield the
highest classification accuracy for the targeted category.
Importantly, the improved classification accuracy of one category
will sacrifice the accuracy of the other category so it is critical
that the analysis yield to clinical oversight.

Predictor variables

Variables included within the CART analysis model for individuals
with lower limb amputation included gender, height, weight,
cause of amputation, history of smoking, body mass index
(adjusted for limb loss [23,24]), comorbid health status and age.
Additionally, three variables from patient-reported outcome meas-
ures were included, the satisfaction and quality of life measures
from the Prosthesis Evaluation Questionnaire Well-Being subsec-
tion [25,26] and the Prosthetic Limb Users Survey of Mobility T-
Score (PLUS-MTM) [27–29]. For comorbid health, the Functional
Comorbidity Index [30] was entered as an interval variable. Level
of amputation was entered as a categorical variable separating
into primary levels of amputation between hip disarticulation and
partial foot amputation. Bilateral amputations were grouped and
coded as a single group.

The demographic variables are reviewed with patients as rou-
tine standard of care. The PLUS-MTM is a patient-reported out-
comes questionnaire, administered via the 12 question format
[31]. The PLUS-MTM is a validated, reliable instrument for assessing
functional mobility in individuals with a lower limb prosthesis
[28]. As it is not valid for those who have not received a pros-
thesis, individuals that had assessments for their initial prosthesis
were thus excluded. The Prosthesis Evaluation Questionnaire is
also a patient-reported outcomes questionnaire [25]. In its entir-
ety, it is an exhaustive review of multiple constructs with regards
to the use of an external prosthesis with each of its multiple sub-
sections also valid for administering separately. For the purposes
of the participating clinics, only the Well-Being subsection is
administered, comprising of questions that ask individuals to
report their health satisfaction and quality of life. Although origin-
ally administered as a continuous visual analogue scale, it has
since been administered in the form of a discrete interval scale
such as is currently the case utilizing a 1–10 response scale to
improve clinical feasibility [26,32].

Data reduction and analysis

Data was examined prior to analysis to remove multiple entries
using only the most recent records and to eliminate records
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where data had not been completed yet. Categorical variables
were coded. Cause of amputation was reduced to diabetes/vascu-
lar disease, trauma, infection without diabetes, cancer, congenital
and other. The dependent variable of functional potential was
coded based on the patient’s assigned K-level, with K1 and K2
categorized as limited community/household ambulators, and K3
and K4 individuals categorized as unlimited community ambula-
tors. The decision was made to design a model to inform these
broad classifications (rather than K-levels) for three reasons: 1)
such a model will have more universal application extending
beyond the United States payer system, 2) CART methodology

lends itself better to binary dependent variables and 3) such a
model is better suited to inform rehabilitation potential rather
than payer classification but can simultaneously serve to assist
with K-level determination.

A CART analysis was implemented through the MatlabVR func-
tion ‘fitctree’ with modifications to allow optimization of the tree.
Gini impurity is the most commonly used method for node splitting
in CART analysis and was used for the current analysis [22]. A robust
sample size of 20% of the dataset was utilized to train the model.
The remaining dataset was used to test the model. Testing the
model allows for risk assessment (or misclassification analysis) and
standard error assessment of the model. The branch and leaf size
were run through an optimization procedure that yielded greatest
mean classification of patients with lowest associated testing accur-
acy for those that were limited community/household ambulators.
The decision was made to optimize for limited community/house-
hold ambulators a priori due to noted imbalance of subjects classi-
fied as limited community/household ambulators which made it
more difficult to accurately classify such individuals.

Statistical analysis

To test the hypothesis and examine the ability of each node
within the model to inform the functional potential determination
of a patient beyond random selection, each branch and leaf node
was subsequently tested utilizing a one-sided non-parametric rank
order test. Essentially, each node of the classification tree pro-
vided an associated probability for the classifications of functional
potential. Using the premise that any significant classification
should provide a better probability than random selection, for
each of the test cases, 19 random assignments of functional
potential were generated through MatlabVR random number gen-
erator. This yielded 20 total assignments (19 random plus the
CART results). The subsequent classification error was determined
for these 19 random assignments and compared to the classifica-
tion error from the assigned node within the CART analysis. The
rank order of the classification error associated with each node
was then used to determine significance at p � 0.05, noting that
a ranking of 1 or 20 is consistent with the top or bottom 5% [33].

Results

The initial data extraction returned 9773 cases, which yielded 2770
cases with full data sets to be included (Table 1; flowchart Figure 2).

Table 1. Subject demographics according to group.

Training Group (n¼ 554) Testing Group (n¼ 2216)

Gender 149 F 576 F
Age (years) 57.0 (14.7) 57.2 (14.5)
Height (cm) 174.4 (11.4) 174.6 (11.2)
Mass (kg) 89.2 (23.5) 89.9 (23.1)
Body Mass Index (kg/m2) 31.5 (7.1) 31.7 (7.2)
Amputation Level
Below-knee 355 1454
Above-knee 144 512
Bilateral 55 250

Cause of Amputation
PVD/ diabetes 228 1098
Trauma 174 616
Infection (without diabetes) 59 186
Cancer/Tumour 26 90
Congenital 25 66
Other 42 160

Functional Comorbidity Index 2.51 (2.16) 2.33 (1.96)
PLUS-MTM T-Score 47.1 (12.2) 46.9 (11.7)
Unlimited Community Ambulators 431 1756

Mean (SD). PVD: peripheral vascular disease; PLUS-MTM: Prosthetic Limb Users Survey of MobilityTM.

Figure 2. Eligibility flow chart, from 9773 outcomes entries, 2770 met inclusion
criteria and were utilized for building and testing the classification and regression
tree analysis model. FCI: Functional Comorbidity Index; PLUS-MTM: Prosthetic
Limb Users Survey of MobilityTM.
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This resulted in a training sample size of 554 patients, and test sam-
ple size of 2216. The low return of full data sets was not unexpected
given the inclusion criteria for complete data and certain factors
(e.g., comorbid health) are only reviewed at evaluation type appoint-
ments and not necessarily at follow-ups or adjustments.

Classification tree

The classification tree ultimately ended with 7 branches and 9
leaves (Figure 3). Among the 16 branch and leaf nodes, 12 tested
significant compared to the random class assignment (Figure 3).
The four non-significant nodes included three terminal leaves, all

of which however had branch nodes that were significant at p
� 0.05.

The optimal size for each leaf and branch was 13 and 30. The
PLUS-MTM T-Score, age, cause of amputation and weight were
ultimately included as decision factors within the classification
tree. Overall correct classification of the tree for the original train-
ing sample was 87.4%, with a risk of 12.6% and standard error
1.4% (Table 2). Among the training sample, the correct classifica-
tion for limited community/household ambulators was 77.2% and
90.3% for unlimited community ambulators. For the testing sam-
ples, the overall correct classification was 81.6% (risk 18.4%, stand-
ard error 0.82%). Among the training sample, the correct
classification for limited community/household ambulators for the
testing samples was 68.7% and 85.0% for unlimited community
ambulators (Table 2).

Discussion

The goal of this study was to effectively develop a classification
tree that could provide probabilities associated with identifying
individuals with a lower limb prosthesis as either limited commu-
nity/household ambulators or unlimited community ambulators to
help inform prosthetic rehabilitation plans of care. The goal was
successfully accomplished, developing a classification tree that
was able to correctly classify 87.4% of individuals in the training
sample and then 81.6% of the subsequent testing samples. It was
hypothesized that the nodes within the classification tree would
inform the functional potential determination with greater prob-
ability than random selection. This hypothesis was largely sup-
ported with 12 out of 16 nodes ultimately providing the ability to
determine appropriate functional potential beyond ran-
dom selection.

Model strengths

The use of a CART analysis and subsequent production of a classi-
fication tree for the care of individuals with lower limb prostheses
is unique. There is growing popularity and use of classification
trees across healthcare (e.g., see references [8,10–15]). The classifi-
cation tree developed in this analysis provides probability for
determining a patient’s functional potential. In the United States
payer system, this has the benefit of assisting with determination
of a patient as either K2 or below (i.e., limited community/house-
hold ambulator), or K3 and above (unlimited community ambula-
tor). For example, if a clinician has a patient who reports a
PLUS-MTM T-Score of 49.5, and is aged 75, and amputation due to
diabetes, the patient has a 92.9% probability of being an unlim-
ited community ambulator (Figure 3, Node 13). Additionally, the
clinician can put together a plan of care to maintain the patient’s
mobility level knowing that if the patient’s mobility drops down
below 49.5 the probability of being an unlimited community

Figure 3. Classification tree developed and tested based on data from 2770
patients. The overall correct classification rate was 87.4%, with a risk of 12.6%
and standard error 1.4% when training the model. Correct classification for lim-
ited community/household ambulators was 77.2% and 90.3% for unlimited com-
munity ambulators. Each node displays class probability and membership in
parentheses for training sample. U: unlimited community ambulator, in Medicare
Functional Classification System would be K3 or K4; L: limited community/house-
hold ambulator, in Medicare Functional Classification System would be K2 or K1.�node classification significantly different than random assignment process, clini-
cians should obtain more information for patients not ending in these nodes
when making functional potential determination.

Table 2. Classification table for training and testing groups.

Group Observed

Predicted

L U Percent correct

Training L 95 28 77.2%
U 42 389 90.3%
Overall Percentage 24.7% 75.3% 87.4%

Testing L 316 144 68.7%
U 263 2493 85.0%
Overall Percentage 26.1% 73.9% 81.6%

L: limited community/household ambulator; U: unlimited community ambulator.
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ambulator drops as well, thus informing proactive physical ther-
apy or prosthetic componentry that can drive improved mobility.

Model weaknesses

As with any model, the strength of the model is predicated on
the data used to inform the model. In this case, while the training
sample size was adequate, far exceeding those used in many pre-
dictive models, the model’s accuracy could likely be improved
with a richer and more diverse dataset. Specifically, the model did
not include any physical performance measures despite the use
of these in some clinical practices to help inform functional
potential [2,3,5,7]. The Amputee Mobility Predictor, in particular, is
a physical performance measure that was designed to inform
functional potential and would thus be expected to improve the
model’s accuracy and predictive ability, and indeed has been to
an extent tried to be utilized within predictive modelling [2,3].
Similar to our results, Dillon et al. were able to predict K2 and K3
functional potential at approximately 80% accuracy. However, the
clinical implementation of physical performance measures is more
challenging with time and space constraints and subsequently,
the current study’s classification tree arguably has greater clinical
utility. In light of Dillon et al.’s findings, it would seem the add-
ition of physical performance measures in conjunction with
patient report outcomes for future predictive models warrants fur-
ther investigation.

In clinical applications, it is also important to understand the
importance of non-significant nodes. In particular, if a patient falls
on a non-significant node (i.e., nodes 8, 15 or 17), then it would
serve prudent to gather more information in support of functional
potential determination such as perhaps an Amputee Mobility
Predictor. Additionally, it is always important to recognize deci-
sion trees as population-based guidance and there may be spe-
cific cases that physicians and other healthcare providers feel do
not align with the decision tree and in such instances, further
information should be collected to support reasoning individual
should be considered an exception.

Study limitations

A limitation of the study is that the model was built retrospect-
ively which resulted in limited ability to implement specific meas-
ures for the purpose of building the classification model. A
retrospective approach is also limiting as it prevents inputting
data such as the Amputee Mobility Predictor. This is due to the
fact that the Amputee Mobility Predictor provides functional
potential decision guidance thus creating bias if the same individ-
ual administers the test and makes functional potential determin-
ation. The PLUS-MTM is a new instrument that has not been
implemented or advertised for guidance of functional potential
which allows it to be applied within this study in the retrospective
manner.

Additionally, it should be noted that the results from CART
analysis do not imply factors that impact a patient’s mobility or
functional potential. Specifically, the results are descriptors that
carried the most information within the analysis towards classifica-
tion. However, there are factors that impact a patient’s functional
potential more directly on the principle of a cause and effect. The
simplest example would be a patient’s desire to ambulate. The
probability of a patient achieving unlimited community ambulator
status if the patient does not wish to leave their home is probably
100%. It is also important to recognize that some variables may
have never reached significance to be used as a splitting criterion

due to lack of representation within the population, or inability to
provide the highest level of information at any single node. In
other words, consider Functional Comorbidity Index where it has
been reported that individuals with increased Functional
Comorbidity Index had reduced mobility [34], yet this failed to be
a factor within the current model. Functional Comorbidity Index
may have just provided the second most information and thus
was not utilized within the current decision tree.

Clinical application

Despite the limitations and weaknesses, the classification tree rep-
resents a start to working towards better informed decision mak-
ing for the care team. There will be certain patient demographics
that will require further information and justification to help guide
functional potential decision making. For example, if a patient
scores a 50.0 on the PLUS-M, is age 70, weighs 100 kg, and cause
of amputation is diabetes, then the care team is aware that the
patient’s probability of being an unlimited community ambulator
is 92.9% (Figure 3, node 11). Furthermore, the team can plan
ahead knowing that if the patient’s mobility on the PLUS-M drops,
the patient’s probability of being an unlimited community ambu-
lator drops to possibly less than 50% (Figure 3, node 17).
Additionally, as the patient ages, the probability would further
decline (Figure 3, node 15). In both cases, the team would want
to do further assessments to fully inform the functional potential.
Although the classification tree provides a probability of 57.1%
that the person will be a limited community/household ambulator
(Figure 3, node 17), without significance from a random assign-
ment, it should not be considered enough to make a clinical deci-
sion and further information and testing is warranted. Intuitively,
a probability of 57.1% is not much better than a coin toss, indi-
cating that the factors used in this analysis are not enough to
inform functional potential for this individual. However, despite
that, knowing how probabilities change with dynamic factors
such as age, mobility and weight, the care team is now able to
better plan necessary steps to provide optimal care as these fac-
tors change.

Conclusion

Decision trees are commonly used in data mining to create a
model that predicts the value of a target (or dependent variable)
based on the values of several inputs (or independent variables).
The current study had the intention of developing a classification-
based decision tree through CART analysis, to present the basic
characteristics of decision trees and to examine the applicability
and possible future applications in the field of prosthetic
rehabilitation.

A large lower limb prosthetic users database (n = 9773) con-
taining patient information and outcomes was utilized to inform
the classification tree with the goal of providing the probability of
a patient’s status as an unlimited community ambulator (i.e., K3
or K4) or a limited community/household ambulator (i.e., K1 or
K2). It was hypothesized that the decision tree could inform the
functional potential determination beyond random selection.
Results overall supported the hypothesis with 12/16 decision
nodes resulting in significance. Ultimately, the classification tree
was able to accurately classify 87.4% of individuals within the
model’s training group (standard error 1.4%), and 81.6% within
the model’s testing group (standard error 0.82%). The resultant
classification tree should be viewed as effectively having the abil-
ity to provide members of the clinical care team with probabilities
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of a patient’s functional potential and subsequent ability to help
guide care decisions.
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